9 research outputs found

    InGaN/GaN heterostructures grown by submonolayer deposition

    No full text
    International audienceInGaN/(Al,Ga)N heterostructures containing ultrathin InGaN layers, grown by submonolayer deposition are studied. It is shown that significant phase separation with the formation of local In-enriched regions ∌3–4 nm in height and ∌5–8 nm in lateral size is observed in InGaN layers in the case of InGaN and GaN growth by cyclic deposition to effective thicknesses of less than one monolayer. The effect of growth interruption in a hydrogen-containing atmosphere during submonolayer growth on the structural and optical properties of InGaN/(Al,Ga)N heterostructures is studied. It is shown that these interruptions stimulate phase separation. It is also shown that the formation of In-enriched regions can be controlled by varying the effective InGaN and GaN thicknesses in the submonolayer deposition cycles

    Monolithic white LEDs: Approaches, technology, design

    No full text
    International audienceThe results of investigations of monolithic white InGaAlN LEDs with an active region containing several thin InGaN layers, emitting in the range from blue to yellow-green, and separated by short-period InGaN/GaN superlattices, are presented. The influence of the growth conditions and layer sequence in the active region on the optical properties of monolithic white LEDs was studied with the aim of controlling their color parameters

    Effect of stimulated phase separation on properties of blue, green and monolithic white LEDs

    No full text
    International audienceDifferent methods of stimulation of phase separation in an InGaN QWs by technological methods and by design of structure were investigated. Effect of admixing of hydrogen during growth interruptions (GIs) after deposition of the InGaN QWs on their structural and optical properties and properties of InGaN‐based LEDs was investigated. Effect of growth pressure on the phase separation was investigated and formation of separate InGaN islands at increase in growth pressure was revealed. It was shown that the phase separation is stumulated in composite InAlN/GaN/InGaN heterostructures and formation of well isolated InGaN islands was observed. Effect of the phase separation on the properties of the blue and deep green LEDs was investigated and strong changes in the spectral position and current dependence of the quantum efficiency were revealed. It was shown that formation of the island due to the phase separation allows control position and width of the emission line and maximum in current dependence of the quantum efficiency. Monolithic white LEDs are containing in active region blue and green InGaN QWs grown with applying of the GIs and emitting in spectral range from 440 nm to 560 nm were studied. Monolithic white LEDs having optimal design of active region demonstrate CCT in the range of 9000‐12000 K and maximal external quantum efficiency up to 14 lm/W

    Composite InGaN/GaN/InAlN heterostructures emitting in the yellow-red spectral region

    No full text
    International audienceThe results of studies of the properties of composite InGaN/GaN/InAlN heterostructures are reported. It is shown that, in the InAlN layer, there is substantial phase separation that brings about the formation of three-dimensional islands consisting of AlN-InAlN-AlN regions. The dimensions of these islands depend on the thickness of the InAlN layer and the conditions of epitaxial growth. Interruptions in the growth of InAlN provide a means for influencing the structural properties of the InAlN islands. The use of composite InGaN/GaN/InAlN heterostructures, in which the InGaN layer with a high In content serves as the active region in light-emitting diode structures, makes it possible to achieve emission in the yellow-red wavelength range 560–620 nm

    Active region based on graded-gap InGaN/GaN superlattices for high-power 440- to 470-nm light-emitting diodes

    No full text
    International audienceThe structural and optical properties of light-emitting diode structures with an active region based on ultrathin InGaN quantum wells limited by short-period InGaN/GaN superlattices from both sides have been investigated. The dependences of the external quantum efficiency on the active region design are analyzed. It is shown that the use of InGaN/GaN structures as limiting graded-gap short-period superlattices may significantly increase the quantum efficiency

    Optimization of the parameters of HEMT GaN/AlN/AlGaN heterostructures for microwave transistors using numerical simulation

    No full text
    cited By 9International audienceThe numerical simulation, and theoretical and experimental optimization of field-effect microwave high-electron-mobility transistors (HEMTs) based on GaN/AlN/AlGaN heterostructures are performed. The results of the study showed that the optimal thicknesses and compositions of the heterostructure layers, allowing high microwave power implementation, are in relatively narrow ranges. It is shown that numerical simulation can be efficiently applied to the development of microwave HEMTs, taking into account basic physical phenomena and features of actual device structures
    corecore